Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(15)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34360766

RESUMO

Age-related hearing loss (ARHL) is the most common sensory disorder among older people, and yet, the treatment options are limited to medical devices such as hearing aids and cochlear implants. The high prevalence of ARHL mandates the development of treatment strategies that can prevent or rescue age-related cochlear degeneration. In this study, we investigated a novel pharmacological strategy based on inhibition of the adenosine A2A receptor (A2AR) in middle aged C57BL/6 mice prone to early onset ARHL. C57BL/6J mice were treated with weekly istradefylline (A2AR antagonist; 1 mg/kg) injections from 6 to 12 months of age. Auditory function was assessed using auditory brainstem responses (ABR) to tone pips (4-32 kHz). ABR thresholds and suprathreshold responses (wave I amplitudes and latencies) were evaluated at 6, 9, and 12 months of age. Functional outcomes were correlated with quantitative histological assessments of sensory hair cells. Cognitive function was assessed using the Morris water maze and the novel object recognition test, and the zero maze test was used to assess anxiety-like behaviour. Weekly injections of istradefylline attenuated ABR threshold shifts by approximately 20 dB at mid to high frequencies (16-32 kHz) but did not improve ABR suprathreshold responses. Istradefylline treatment improved hair cell survival in a turn-dependent manner, whilst the cognitive function was unaffected by istradefylline treatment. This study presents the first evidence for the rescue potential of istradefylline in ARHL and highlights the role of A2AR in development of age-related cochlear degeneration.


Assuntos
Envelhecimento , Limiar Auditivo/efeitos dos fármacos , Potenciais Evocados Auditivos do Tronco Encefálico/efeitos dos fármacos , Presbiacusia , Purinas/farmacologia , Animais , Masculino , Camundongos , Presbiacusia/tratamento farmacológico , Presbiacusia/patologia , Presbiacusia/fisiopatologia
2.
Cells ; 8(8)2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31408967

RESUMO

The primary loss of cochlear glutamatergic afferent nerve synapses due to noise or ageing (cochlear neuropathy) often presents as difficulties in speech discrimination in noisy conditions (hidden hearing loss (HHL)). Currently, there is no treatment for this condition. Our previous studies in mice with genetic deletion of the adenosine A2A receptor (A2AR) have demonstrated better preservation of cochlear afferent synapses and spiral ganglion neurons after noise exposure compared to wildtype mice. This has informed our current targeted approach to cochlear neuroprotection based on pharmacological inhibition of the A2AR. Here, we have used organotypic tissue culture of the Wistar rat cochlea at postnatal day 6 (P6) to model excitotoxic injury induced by N-methyl-d-aspartate (NMDA)/kainic acid (NK) treatment for 2 h. The excitotoxic injury was characterised by a reduction in the density of neural processes immediately after NK treatment and loss of afferent synapses in the presence of intact sensory hair cells. The administration of istradefylline (a clinically approved A2AR antagonist) reduced deafferentation of inner hair cells and improved the survival of afferent synapses after excitotoxic injury. This study thus provides evidence that A2AR inhibition promotes cochlear recovery from excitotoxic injury, and may have implications for the treatment of cochlear neuropathy and prevention of HHL.


Assuntos
Cóclea/efeitos dos fármacos , Cóclea/lesões , Purinas/farmacologia , Animais , Perda Auditiva Provocada por Ruído/tratamento farmacológico , Modelos Biológicos , Ratos , Ratos Wistar , Técnicas de Cultura de Tecidos , Traumatismos do Nervo Vestibulococlear/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...